Perturbation Analysis for t-Product-Based Tensor Inverse, Moore-Penrose Inverse and Tensor System

نویسندگان

چکیده

This paper establishes some perturbation analysis for the tensor inverse, Moore-Penrose and system based on t-product. In settings of structured perturbations, we generalize Sherman-Morrison-Woodbury (SMW) formula to t-product scenarios. The SMW can be used perform sensitivity a multilinear equations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The optimal perturbation bounds for the weighted Moore-Penrose inverse

In this paper, we obtain optimal perturbation bounds of the weighted Moore-Penrose inverse under the weighted unitary invariant norm, the weighted Q-norm and the weighted F -norm, and thereby extend some recent results.

متن کامل

When Does the Moore–penrose Inverse Flip?

In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.

متن کامل

Minors of the Moore - Penrose Inverse ∗

Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...

متن کامل

Fast Computation of Moore-Penrose Inverse Matrices

Many neural learning algorithms require to solve large least square systems in order to obtain synaptic weights. Moore-Penrose inverse matrices allow for solving such systems, even with rank deficiency, and they provide minimum-norm vectors of synaptic weights, which contribute to the regularization of the input-output mapping. It is thus of interest to develop fast and accurate algorithms for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Applied Mathematics and Computation

سال: 2022

ISSN: ['2096-6385', '2661-8893']

DOI: https://doi.org/10.1007/s42967-022-00186-1